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Microelectronics for dynamic neural networks 

Abstract 

Artificial Neural Networks are the massively paral- 
lel interconnection of  simple processing elements. Com- 
puting times for the simulation of  these parallel sys- 
tems on today's von-Neumann-computers increase with 
the squared number of  processing elements. There is 
a need for  application specific hardware. This paper 
describes various investigations of  analog as well as 
digital hardware for  neural networks. Possible solutions 
for  the connection problem and different circuit designs 
will be explained. Then our cascadable digital circuit 
for  the emulation of  a biology-oriented, dynamic neural 
network will be presented. 

Key words : Neural network, Special purpose computer, Intercon- 
nexion, Cascade arrangement, Two dimension network, Analog circuit, 
Digital circuit, Dynamic model, Circuit design. 

lisations par des circuits ~lectroniques. II d~crit aussi 
un circuit num&ique pouvant Otre montO en cascade 
pour dmuler un r~seau neuronal dynamique mod~lisant 
un systdme biologique. 
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MICROI~LECTRONIQUE 
POUR RI~SEAUX NEURONAUX 

DYNAMIQUES 
I. INTRODUCTION 

R6sum6 

Les r~seaux neuronaux artificiels consistent en une 
interconnexion massivement paralldle de processeurs 
simples. Les temps de calcul n~cessaires ft leur simu- 
lation sur les ordinateurs actuels du type von Neumann 
croissent comme le carrd du nombre de processeurs. I1 
faut donc d~velopper du matdriel sp~cialisd. L'article 
dOcrit des Otudes de matdriels analogiques et numdriques 
pour r~seaux neuronaux. II pr~sente des solutions pour 
r~soudre le probldme de connexions et diffdrentes r~a- 

The term Artificial Neural Networks stands for the 
massive parallel interconnection of  simple processing 
elements. Following biology, these processing elements 
are often called neurons or neuron models. The connec- 
tion elements are called synapses, respectively. In neural 
networks mostly used today the synapses are multipliers 
and the neurons are adders with a subsequent threshold 
function, e.g. the sigmoid function [13]. 

The most  popular network architecture is the multi- 
layer feedforward architecture (Fig. 1), i.e. the neurons 
are arranged in layers and the neurons of  two subsequent 
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FIG. 1. - -  Multi layer network architecture and processing e lement  [13]. 

Rdseau d architecture multicouche et processeur dldmentaire. 

layers are fully interconnected in forward direction via 
synapses. There is a learning algorithm for this network 
architecture, the so-called error-back propagation [13]. 
A learning algorithm is a strategy to iteratively change 
the synaptic weights (the multiplicands) so that a set of 
input values is associated with a set of output values as 
desired. 

The computing times for the simulation of neural 
networks on current digital computers based on the 
von-Neumann-architecture increase with the number of 
synaptic interconnections, i.e. the squared number of the 
neurons in fully interconnected network architectures. 
These computing times are too long for realistic appli- 
cations, such as associative image pattern recognition. 
There is a need for specific hardware [11]. 

II. THE CONNECTION PROBLEM 

One problem often mentioned regarding the hardware 
realization of neural networks is the so-called connec- 
tion problem, i.e. how can network architectures be map- 
ped onto chip architectures without creating too many 
wire crossings. In the main there are two strategies 
to avoid this problem. One possibility especially for 
general-purpose neurocomputers is to combine each neu- 
ral output value with an address (e.g. [1, 21]). A second 
possibility is the use of architectural variations. In that 
case, it has to be taken into account that a considerable 
area is needed for the circuit design of the synaptic inter- 
connections. 

Every kind of network can always be described by 
a matrix, the entries of which stand for the connections 
between the nodes. A fully interconnected neural net- 
work with N neurons is described by an N x N matrix 

(an {N x N x number of parameters}-tensor, respecti- 
vely) containing the synaptic transmission parameters. 
The optimal layout for the synapse circuits of a fully 
parallel, fully interconnected neural network is the form 
of a square matrix. The input lines can, e.g., be pla- 
ced horizontally over this matrix, the summation lines 
vertically. The neuron blocks can be arranged in a row 
beneath this matrix. Area can be saved and regularity 
increased by integrating the connections between neu- 
ral outputs and synaptic inputs into the synapse ceils 
(Fig. 2). By this, an abutment design of cells of the 
same kind becomes possible. 

FIG. 2. - -  Compres sed  matr ix  architecture 
for fully in terconnected neural networks.  

Architecture matricielle comprimde 
pour rdseaux neuronaux ~ interconnexion totale. 
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This matrix architecture can easily be made casca- 
dable by connecting the input- and output-lines as well 
as the summation lines to pads. If  such standard chips 
are cascaded to a larger neuron matrix- the neuron blocks 
of  some chips remain unused (Fig. 3). 

A fully interconnected network architecture can be 
used for every kind of network architecture by setting 
the multiplicative parameters of unused synapses to zero. 
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However, circuit effort can considerably be reduced 
and, by this, area can be saved if only those synaptic 
interconnections that are implemented are really needed. 
E.g., a 3-layer feedforward network with N1, N2 and 
N3 neurons in the first, second and third layer needs 
N1 • N2 + N2 x N3 instead of (N1 + N2 +N3) 2 
synaptic interconnections. The optimal architecture for 
such a network is one N1 • N2-matrix and one N2 x N3- 
matrix of synaptic interconnections (Fig. 4). It follows 
that multilayer networks can easily be built up with 
the standard chips described, because again matrices 
are needed (Fig. 5). Even if feedback between layers 
is desired, the architecture constructed out of matrices 
is the optimal way. E.g., full feedback between layer 3 
and 1 needs an N3 • N1 connection matrix. 
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FIG. 3. - -  C a s c a d e d  ma t r i x  archi tec ture  
for  fu l ly  i n t e r connec t ed  ne tworks .  

Architecture matriciel le  en cascade 
pour  r~seaux d interconnexion totale. 

F1G. 4. - -  O p t i m i z e d  m a t r i x  archi tec ture  
for  mu l t i l aye r  f e e d f o r w a r d  ne tworks .  

Architecture matr ic ie l le  optimis~e 
pour  r~seaux mul t icouches  dt antdroaction. 
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FIG. 5 .  - -  Matr ix  archi tec tures  c a s c a d e d  to a mul t i l ayer  ne twork .  

Architectures matricielles rnontdes en cascade pour  constituer un r~seau mult icouche.  
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Biology-oriented neural networks often have an archi- 
tecture where every neuron is connected to a defined 
number of neighbours. The biological background is that 
the probability that two cells are connected decreases 
with their distance [10]. This is also expressed by the 
Mexican hat function for the synaptic weight parameters, 
if it is approximated by zero for a certain distance 
value. That type of architecture is also known from the 
Kohonen feature map [ 12] or from inhibitory networks. 
It will be called neighbourhood network in the following. 

The strategy to find the optimal chip architecture 
for these neighbourhood network architectures is quite 
simple. It is demonstrated for a simple neighbourhood 
network, in which each neuron is connected to its nearest 
neighbours only (Fig. 6). Take a square matrix contai- 
ning all possible connections and erase every connection 
that remains unused (Fig. 7). Then try to compress the 
remaining graph (Fig. 8). The result is rather regular 
for the one-dimensional case (Fig. 9), more complica- 
ted two-dimensional cases (Fig. 10), and even for three- 
dimensional networks, too. Cascadability is easy for the 
one-dimensional case if the number of neighbours is 
defined. In the two-dimensional case regular substruc- 
tures can be found, too. More flexible cascading strate- 
gies for these types of networks are looked for. 

The structures shown cannot only be architectures 
for integrated circuits but also describe the data flow 
in systolic architectures, in parallel processors or in 
programs. 

Another way to avoid the connection problem is to 
reduce the connectivity to a local neighbourhood as in 
the simple neighbourhood network. In the most simple 
case of so-called cellular neural networks [4] the neurons 
are connected to their nearest neighbours only. Two- 
dimensional architectures of  this type can directly be 
mapped onto hardware [7]. However, those networks 
require a different theoretical approach. 
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FIG. 6. - -  S imple  t w o - d i m e n s i o n a l  n e i g h b o u r h o o d  ne twork .  

R~seau c~ voisinage bidimensionnel simple. 

I I I .  P O S S I B I L I T I E S  
OF A N A L O G  HARDWARE 

I M P L E M E N T A T I O N S  

After the basic architectural problems have been 
shown in the previous chapter, this chapter describes 
starting points for an analog circuit design of neural 
hardware. As shown above most of  the area will be 
spent for the synapse circuits. The main advantage of 
an analog circuit design is the possibility to sum up 
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FIG. 7 .  - -  S i m p l e  two-d imens iona l  n e i g h b o u r h o o d  ne twork ,  first s tep t o w a r d s  an  op t imized  archi tec ture .  

PremWre ~tape vers une architecture optimis~e pour r~seau dt voisinage bidimensionnel simple. 
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FIG. 9. - -  Advanced  architecture 
for the one-dimensional  neighborhood network.  

Architecture dvoluOe 
pour rdseau r voisinage unidimensionnel. 

the postsynaptic signals with a summation line. If the 
synapse circuits are designed to deliver a current, these 
currents are summed in a node, the summation line. 

The second advantage of analog circuit designs is the 
possibility to perform a multiplication with just a few 
transistors, e.g. with a transconductance multiplier. The 
multiplication of the input value with a so-called weight 
is the synaptic transmission function mostly used in to- 
day's static neural network models. One problem of the 
analog circuit design is the analog storage of this weight. 
This storage especially becomes difficult if a high accu- 
racy is required. E.g., the error-backpropagation lear- 
ning algorithm requires 12 to 16 bits accuracy of the 
weights [19]. 

For moderate accuracy requirements there are good 
ideas for analog circuit designs. At the University of 
Dortmund, e.g., an integration density of 64 x 64 connec- 
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FIG. 10. - -  A d v a n c e d  architecture for the two-dimensional  ne ighbourhood network  
(example  : 6 x 6 array of  neurons,  each connected to first and second neighbours) .  

Architecture dvolude pour rdseau ~ voisinage bidimensionnel 
(par exemple un rdseau de 6 • 6 neurones dent chacun est connect~ au premier et au deuxiOme voisins). 

ANN. TI~LECOMMUN., 48, n ~ 7-8, 1993 5/10 



S. J. PRANGE -- MICROELECTRONICS FOR DYNAMIC NEURAL NETWORKS 373 

tion elements of an associative learning matrix has been 
achieved in 2.5 #m-technology [20]. Such a learning 
matrix needs bivalent weights only, i.e., two processing 
elements are connected or not. 

For trivalent weights - -  positive, negative or no 
connection - -  the problem is to match the positively 
and negatively weighted current. If p- and n-chalmel- 
transistors are used for the positive and negative current, 
respectively, the mismatch can be adjusted with the 
W/L-ratio. However, if there are many connections, 
the mismatch due to tolerances can lead to trouble. An 
idea to decrease the difference of the currents by using 
transistors of one type and two summation lines - -  one 
for positively and one for negatively weighted currents 
- -  is described in [22] (Fig. 11). 
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FIG. 11. - -  A n a l o g  synapse  circui t  fo r  t r ivalent  weights  

wi th  t ransis tors  o f  one  type  
for  pos i t ive  and  nega t ive  weights  [22].  

Circuit synaptique analogique d ponddration trivalente 
rdalis~ avec des transistors d' un seul type 

pour les poids positifs et n~gatifs. 

For more accurate weights more accurate analog 
storage principles have to be taken into account, e.g. 
the storage of an analog voltage on a capacitor. In 
this case the reverse current over the drain-substrate 
junction discharging the storage capacitance has to be 
considered. On the one hand, there are concepts to 
reduce this discharging current by decreasing the voltage 
at the drain-substrate diode (Fig. 12) [16]. On the other 
hand, there is a concept to periodically refresh the 
stored voltages without the need to address each storage 
capacitor (Fig. 13) [8]. This is done with a triangular 
waveform and a clock signal connected to all storage 
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FIG. 12. - -  A n a l o g  s to rage  cell  wi th  r educed  cur ren t  
in r everse  d i rec t ion  over  the d ra in - subs t ra te -d iode  [8, 16]. 

Cellule m~moire analogique gl courant rdduit 
en sens inverse ~ travers la diode drain-substrat. 
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FIG. 13. - -  C o n c e p t  for  per iod ica l  r e f resh ing  
o f  the  s tored charges  [8]. 

Principe de rafraichissement ps 
des charges stock~es. 

elements. The control circuit of each storage element 
regenerates the stored voltage if and only the triangular 
signal exceeds the stored voltage during a clock = high 
period. 

Another possibility to store analog values even for 
longer times is the storage of charges on analog Eeprom- 
cells. Their capacitances are not nearly as discharged 
by any leakage currents so that charges can be stored 
for years. This kind of weight storage is also used 
for the Intel-chip Etann which is already commercially 
available. 64 neurons and 10.240 synapses are integrated 
on this chip. It occupies an area of 0.6 cm 2 in 1 /zm- 
technology. A short-term accuracy of 8 bits and a long- 
term accuracy of 4 to 5 bits is mentioned in [9]. 

However, the exact writing of charges onto the floa- 
ting Eeprom-gate is problematic. In [23] a circuit is pro- 
posed that approximates the desired value via a dam- 
ped sigmoidal voltage. Further problems with analog 
Eeprom-storage-cells are the slow writing of values 
(order of micro- to milliseconds) and the limited number 
of write cycles. The latter makes long learning phases 
impossible. 

A concept that makes use of digital and analog cir- 
cuit design techniques is to perform the neural algo- 
rithms in pulse-coded arithmetics. The multiplication is 
done by an AND-operation of an input pulsestream with 
a weighting pulsestream, the pulsewidth of which repre- 
sents the weight. The summation is approximated by an 
oR-function of the postsynaptic pulsestreams. The subse- 
quent integration of the resulting pulsestream is an ana- 
log value for the neuron activity. A test chip contains 10 
neurons and 100 synapses with 5 bits weight accuracy 
on an area of 174 x 73 mm 2 per synapse in 3 #m CMOS 
technology [14]. 
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IV. P O S S I B I L I T I E S  
OF D I G I T A L  HARDWARE 

I M P L E M E N T A T I O N S  

In digital hardware concepts accuracy problems can 
be overcome by hardware effort. Then all known prin- 
ciples of digital circuit design can be applied to the 
storage of parameters and to the algorithms, too [1, 
3, 5, 15, 17, 21]. Exemplarily, the concept for a 
general-purpose neuroemulator [2] will be shown here. 
For the learning phase and for the recognition phase, 
too, the most computing time intensive parts of the 
neural algoritms are matrix-matrix- and matrix-vector- 
multiplications. The latter can be transformed to matrix- 
matrix-multiplications, too, by combining a set of input 
vectors to an input matrix. In [2] a systolic processor 
for these matrix-matrix-multiplications is described. By 
a clever sorting of the input- and weight values this 
processor allows a partially serial, cascadable and fast 
computation of the neural algorithms. 

V. A D I G I T A L  H A R D W A R E  A P P R O A C H  
TO A D Y N A M I C  N E U R A L  N E T W O R K  

Measurements at the nervous system indicate that 
associative feature linking is coded via synchronization 
of temporal signals [6]. A dynamic neuron model, the 
Marburg model (Fig. 14), has been deduced from these 
measurements. With this model it is possible to imitate 
the synchronization effects. In contrast to the hardware 
approaches to conventional static neuron models shown 
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above, the development of a digital emulator for this 
dynamic neural network will be explained in this chapter. 

By exploiting the synchronization effects measured, 
neural networks consisting of biology-oriented dynamic 
neuron models, e.g. the Marburg model, offer new pos- 
sibilities for associative pattern recognition [18]. The 
synapses of the Marburg model, i.e. the interconnec- 
tions between the model neurons, are not just multipli- 
cative weights but perform a dynamic transmission func- 
tion described by two parameters, namely an amplitude 
and a delay parameter. The neural output function is a 
dynamic function, too, creating output pulses of constant 
duration and amplitude. Information is coded in the tem- 
poral arrangement of  pulses. 

Due to the internal feedbacks of the synapse function 
and the neural output function, the simulation of this 
dynamic neural network model is more computing time 
intensive than the simulation of static models. That is 
the reason specific hardware for the fast and flexible 
emulation of this model is urgently needed especially 
to develop and test learning strategies. The emulation 
results have to be reproducible and comparable to the 
simulations performed up to now. These requirements 
are fulfilled by our cascadable digital circuit. 

In contrast to other biology-oriented neuron models, 
the Marburg model has two different types of inputs, 
namely feeding and linking inputs. The network archi- 
tectures used with this model are multilayer networks 
with feedforward via feeding inputs and feedback via 
linking inputs. These architectures are inspired by hyper- 
columns found in the visual cortex. Due to these spe- 
cial architectural requirements, two types of synaptic 
matrices, one for feeding and one for linking synapses, 
have to be considered. The summation lines of both 
matrices would have to be connected to pins to achieve 
a flexible cascadability for both, feeding and linking 
synapses. Instead, a standard chip solution was chosen 
with only one matrix that can be configured to be feeding 
or linking. From this, one input of  the feeding/linking- 
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multiplier has to be connected to pins. The +1 for the 
sum of linking inputs (Fig. 14) can be fed to the casca- 
dability input configuring synapses to be linking. 

The synapse of the Marburg model can be emulated 
by a first order recursive digital filter. The main problems 
of the digital circuit design is the enormous area requi- 
red for a single synapse and the number of pins required 
to transmit the sum of the postsynaptic signals over the 
chip borders for cascadability. Both problems can be sol- 
ved by allowing a partially serial processing. If a defined 
number of synapses are processed serially and the pro- 
cessing is shifted in time, the number of multipliers and 
adders required for the synaptic transmission functions 
and for the neural output functions and the pin number 
required is divided by the number of synapses serially 
processed (Fig. 17). Furthermore, the partially serial pro- 
cessing results in a very dense and regular layout will 
be shown. 

The starting point of the circuit design is the serial 
16-synapses building block. With respect to the bit accu- 
racy requirements of the Applied Physics and Biophy- 
sics Department of the Marburg University, we decided 
to process 16 synapses serially (Fig. 15). Besides the 
multiplier, the most area consuming parts are the para- 
meter memories, i.e. 2 x 16 x 8 bits. Since the partially 
serial processing does not require a fast multiplication 
but a high throughput-rate and the storage of interme- 
diate results, the multiplier is put into practice by a two- 
dimensionally pipelined 16 x 8 array multiplier. Pipe- 
lining offers the possibility to store the parameters in 
pipeline register loops, consisting of two minimal inver- 
ters and two transmission gates per stage. Parameters are 
written by connecting the loops of all synapse building 
blocks to one single loop and by putting in the parame- 
ter values serially. By this, any addressing overhead is 
avoided. The pipeline registers for the parameter storage 
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for the feed back of the multiplication result are inclu- 
ded in the layout of the multiplier cells. Furthermore, 
two wires for the summation of the postsynaptic signals 
are layed out inside the multiplier cell, the reason of 
which will be shown later. The adder and the AND-gate in 
Figure 15 perform a one-bit-multiplication, so that their 
circuit consists of multiplier cells, too. The multiplier 
cell described is the main building block for a regular 
abutment design of the whole synapse building block 
(Fig. 16). 
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FIG. 16. -- Regula r  circui t  s tructure to ach ieve  an abutment  layout  
of the synapse  bu i ld ing  block. 

Structure r~guli@re de circuit 
pour disposer les dl~ments du bloc synaptique de base. 

0 
F 

0 
03 

D 
El 

~counter 
]DEMUX-cQI ~lc ~ a n d 

+; 
O 

(.3 

I 

I 0J-o  0j 

I ~+- ,  0J - 

103--  ~ q -  
O_ f__ ,~ 

--a f0 Cl 03 

i 0  

I (1/n-countQm- 
1-bit meg~stem) 

post- 
p _, sgnapt~c ] ~---1 signa~ 

~ l i n e d  
81arPag mu I t~p I. 

I 

0 h 
16 stages decag 

pamameteF sh~ft reg. 

f -  
Dq 

03 

0 

C_ 
o ,  

I 
f -  
:3] 
03 

FIG. 15. - -  Functional schematic of  the (( 16-synapses )) bu i ld ing  block.  

Schema fonctionnel du bloc de base d 16 synapses. 

8/10 ANN. TI~Lt~COMMUN., 48, n ~ 7-8, 1993 



376 

p u  18@ i N D u t  B - s y n a l o S e s  
bu~ I d i n g  

b l o c k  
16 t i m e s  

6-S yn al:S s e s 1 
bu~ I d i n g  

c a s c a d a b  i I ~ %g b o c k  
i n p u t  

c a s c a d a b  i I i t y  
o u t p u t  

j z/o-p d  / 
1 i NR i N g  s u m  x.>~_~#@~_ 

_ e e 8  n g -  ' 

~ng 
~multipl 

a d j u s t a b l e  
, n e u r - a  I 

ou tpu t  I1\11 
#unct ~ on LL~ 

DO I s e  o u t p u t  

FIG. 17. - -  Block diagram of the emulator 
for biology-oriented neural networks. 

Schdma de principe de l'dmulateur de rdseaux neuronaux 
moddlisant des systbmes biologiques. 

S. J. PRANGE -- MICROELECTRONICS FOR DYNAMIC NEURAL NETWORKS 

or without feedback) without any delay overhead. Due 
to the nature of the neuron model, the power of the 
neural network circuit presented cannot be measured by 
interconnections per second. It performs 1 sample per 16 
clock cycles not depending on the number of cascaded 
chips, on the number of neurons, nor on the number of 
interconnections. 

VI. SUMMARY 

Different chip architectures and circuit designs for 
the implementation of neural networks on silicon have 
been shown. It should have become clear, that especially 
in the analog area restrictions according to accuracy 
have to be considered. Digital circuits can fulfill the 
accuracy requirements by hardware effort. To find a 
compromise between speed and hardware effort partially 
serial concepts are taken into consideration. However, 
with today's digital processing speeds this does not have 
to be a restriction. 

Manuscrit refu le 3 f~vrier 1993. 

The 16-synapses building block described is regarded 
as a row of a 16 x 16 synapse matrix. The next step is 
to sum up the postsynaptic signals. Due to the serial 
processing, this summation can be done serially, too. 
The adder stage is layed out beneath the 16-synapses 
building block and connected to the preceding synapse 
by the wires, which have been included inside the 
multiplier cells as mentioned above. By this, the whole 
synapse matrix can be designed by an abutment of 
the 16-synapses building blocks. This abutment layout 
strategy can easily be adapted to larger matrices and 
higher bit accuracies by increasing the number k of 
synapses serially processed, i.e. increasing the number 
of multiplier cells inside the k-synapses building block. 

A further special feature of the circuit is the possibi- 
lity to adjust the shape of the output pulse - -  starting 
delay, pulsewidth, and a refractory time. This can be on 
one hand, used to adjust the temporal accuracy of the 
emulation, because the pulsewidth is a measure for the 
number of samples per time unit. On the other hand, the 
output pulse's delay, which is desired and biologically 
plausible, can be used to achieve a delayless cascada- 
bility. By decreasing the delay, the calculation start of 
cascaded chips can be shifted in time, so that there are no 
timing problems and no delays in network architectures 
containing feedback. 

The chip is designed in 1.6 #m ES2 CMOS technology 
on an area of 88 mm 2 with 120 pads. It virtually contains 
an emulator for 16 Marburg model neurons with 16 
synapses per neuron including all parameter memories. 
Several of these chips can be cascaded to fully inter- 
connected networks and to multilayer networks (with 
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